SIZE OF CONDENSATE NUCLEI IN A STREAM
OF SUPERSATURATED VAPOR
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Analyzed is the effect of the relative vapor stream velocity on the size of condensate nuclei.

Many studies have been published so far [1-3 et al.] concerning the size of condensate nuclei in
stationary supersaturated vapor. The results of these studies can be used for analyzing the process of
initial phase transformation in a vapor stream, of course, but only under the condition that the relative
velocity between the phases is zero.

In practice one usually encounters problemsof condensation in a vapor stream where droplets move
relative to it. Quite understandably, the conditions of the vapor flow cannot but affect the kinetics of con-
densation. It has been shown in [4] that an important factor in the process of homogeneous condensation is
the mean free-flow-time of a droplet. This mean free-flow-time will be defined as the mean time during
which a droplet moves without colliding against vapor molecules, i.e., the time between two successive
collisions of a droplet containing g molecules against single vapor molecules.

We will determine the mean free-flow-time 7, of a droplet whose radius is rg and which consists of
g molecules, the radius of each molecule being r{, when g > 1 and the relative velocity of the vapor stream
Is Vig. For the purpose of analysis, we consider separately a fictitious spherical surface (Fig. 1) with the
radius

r=1rgry.

representing the effective collision surface between a droplet complex (radius rg) and a vapor molecule
(radius r;), and we calculate the number of collisions between vapor molecules and-this surface per wmit
time.

The surface of the hemisphere facing the vapor stream (0 < 6 = n/2) will be denoted by S 4» the back
surface (/2 = 6 = 7) will be denoted by S_. Elementary spherical zones on the front surface and on the
back surface will be denoted by dS, and dS_, respectively. The area of such an elementary zone on the
given spherical surface is '

dS. = 25r?sin 6d0. (1)

Let us determine the number of molecules dn, colliding against an elementary surface element dS, per
unit time. According to [5], we can write

V. — .
dn, =n, > lf’fg {exp (=10 + V'mw m, [14 erf (n,)]} 4S,. 2
Analogously, the number of collisions dn_'against a surface element dS_ is
dn_ = n, —Ym_ {exp(— ) — ) T, [1—eri(n,)]} dS_. @)
21 m
Here
. /2T
m },Tl
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Fig. 1. Diagram to show effective section through a colliding system (fictitious spherical surface).
Fig. 2. Variation in the relative mean free-flow-time of a droplet.
Fig. 3. Number of molecules in a condensate nucleus, as a function of the degrees subcool AT (°K} in

water vapor.

is the most probable thermal velocity of vapor molecules. The quantity

. (Vlg)n
V

Yn

m

characterizes the ratio of two velocities: the component of the relative vapor velocity (ng)n normal to the
surface element and the most probable thermal velocity of vapor molecules V.

The error function in (2) and (3) is

Ta
erf(n,) = 2 exp (— x?) dx. (4)
Va
0
With the dimensionless relative vapor velocity
T] = Y..li. = ’nn Vlg R
Vin Vigh
we can write
M, = ncosf. (5)

Having thus defermined the number of collisions n and n_ between vapor molecules and surfaces

8., S_, respectively, we find the total number of collisions

-

+9
n=n,+n_ (6)

In order to determine n, and n_, it is necessary to integrate expressions (2) and (3) with respect to S,
and S_, respectively. Taking into account (1) and (5), we obtain

kT
n, =n, l//_’i—ml artF, (n), (7)
n = n, l/ %T; 2 F (), (8)

where
n
, erf (M) + 1742 | xerf(x)dx
V= §

_ . (
Fon = 5 - : ©)
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erf(n) — xerf(x) dx

Ol

(10)

F.)=—5 .

With the aid of these relations, it is not difficult to determine the total number of molecules colliding
against a droplet per unit time:

n=n, 8{% ar’F (m), (11)

where

F) = = [Fot)+F_ ()] = Va . (12)

- n
erf(m) + 2 g xerf(x)dx
]
n

When the relative vapor velocity Vig =0, then n = 0 and function F() =1. Under these conditions formula
(11) becomes the well-known formula for the number of collisions between vapor molecules and a sphere
of radius rg in a stationary gaseous medium:

Mg =N, ] o (13)
Knowing the number of collisions between a droplet and vapor molecules per unit time, we can easily de-

termine the mean free-flow-time for a complex of g molecules:

T :~1—: I . (14)

f n n ngz mreF (‘Y])
1 s,

When there is no relative motion, i.e., n = 0, then formula (14) becomes the well-known formula for the
mean free-flow-time of a droplet in stationary vapor:

1
VY S— (15)

With the aid of‘(14) and (15), we set up the ratios

@ (n) = (16)

1) OIQQ

and
@) =1/F(n). (17)

The trend of 7,/ 79 Tg as a function of n is well indicated by the curve in Fig, 2. As the dlmenswnless rela-
tive velocity o%the vapor stream 7 increases, according to the graph, the quantity Tg/ Tg decreases. For
low relative vapor velocities (7 < 1) the first two terms in the Taylor series expansion of erf (x)

~ f/n (1_ 1‘3_) , (18)

yield, after simple transformations,

¥ (19)
T, .
3 15
Formula (19) determines the mean free-flow-~time of a droplet as a function of the relative vapor velocity
at low values of 7,
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For high relative vapor velocities (5 > 1) the first two terms in the asymptotic series expansion of
erf (x)

Y
erf (¥) =1— M, (20)
X3 @
yield a hyperbolic relation
2

Let us now determine the critical size of a condensate nucleus under the given conditions. For this it is
necessary to establish what number of molecules in a droplet g, will produce a dynamic equilibrium be-
tween incoming and outgoing molecules.

As has been shown in [4], a droplet consisting of gop molecules may be in dynamic equilibrium
with the vapor when the probability p_ of one droplet molecule evaporating is equal to the probability p.
of one vapor molecule condensing. In accordance with the kinetic theory of liquids [1] and gases [5],

¢ ¢
p_~ = and p, & — , (22)
g Tg

Here

*

A U\ 0

. S 3

K I/SkT exP(kT) =3)
Ty

is the mean time of interaction between vapor molecules and a droplet. It follows from (22) that a complex
of gop rnolecules may be in dynamic equilibrium with the ambient vapor when the mean time of their inter-
action 7% becomes equal to the mean free-flow-time of the complex. The size of such a complex is deter-
mined by the number of molecules gg, in it, namely

L2 f_ Ve \_ L
r°’=2rl[|/4m%n,_ A eXp( 21:;") 2]' @4

Inserting into (24) the mean free-flow-path

1
M= , 25
= T (25)

we obtain

— M o3 / - Ig _l_} 26
The number of molecules in a droplet of critical size is then

w=8 h/— @) exp( i ) _Hs 27)

Unlike in {4], formulas (24) and (27) take into account the effect of the relative vapor velocity on r
and ggp. For the condensation in a stationary medium (V1g =0 and 1 = 0) formulas (24) and (27) become
directly the well-known formulas in [4].

cr

The critical number of molecules g, as a function of degrees subcool AT is shown in Fig. 3 for
water vapor under a pressure of 0.5 bar and at various values of n from 0 to 5. The graph indicates that
at eachvalue of 7 the number of molecules in a condensate nucleus decreases as the degrees subcool in-
crease, As the dimensionless relative velocity n increases, the number of molecules in a critical-size
droplet decreases continually., For low relative velocities (n < 1)} Egs. (12), (17), and (18) yield

L 1 oo [ Ve )_i"
Tox = 211 Ay L, 2 [ TTmr )T, (28)
3
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and -

[ (— e )T (
Ber =8 AT, 2 . P 2kT 2 )
I+3m-T15"

For high relative velocities (y »> 1) Egs. (12), (17), and (26) yield

_ RN B 7 W
'°'”2"[‘/K ) am exp( kT ) 2 50)

and

M2 14 178 )
gcrzs[ 2 Vo exp(.-%_;)—_z-] : @l
These formulas yield the values of r,, and g, for two extreme cases of a two-phase flow: when the rela-
tive velocity between vapor and droplets is low and when the thermal velocity of vapor molecules is high.
NOTATION

is the width of potential gap;
is the Boltzmann constant;
my is the mass of a molecule;

L

n, is the number of molecules per wmit vapor volume;
T is the absolute temperature of vapor;
Vg is the energy of bond between a molecule and a complex;
t is the time.
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